skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schleicher, Derek J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Globally, many species’ distributions are shifting in response to contemporary climate change. However, the direction and rate of shifts remain difficult to predict, impeding managers’ abilities to optimize resource allocation. Here, we developed a new approach for forecasting species range‐limit shifts that requires only abundance data along environmental (for example, elevational) gradients. We posited that the distribution of species’ abundances could offer insights into the potential for future range‐limit shifts. We then tested this prediction using data from several transect studies that compared historical and contemporary distributions. Consistent with our prediction, we found that strong asymmetry in abundance distributions (that is, “leaning” distributions) indeed preceded species’ lower‐limit range shifts. Accordingly, surveying abundances along environmental gradients may represent a promising, cost‐effective method for forecasting local shifts. Ideally, this approach will be incorporated by practitioners into species‐specific management planning and will inform on‐the‐ground conservation efforts. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026